_* Q’% U.S. DEPARTMENT OF ' v
ENERGY A
DS

on the Path to Exascale

Alice Koniges, NERSC, Berkeley Lab

ASCR Programming Challenges Workshop
July 2011 e

Path to Exascale: some examples, their discovered
“gems,” and implications for programming models

GTS — magnetic fusion particle-in-cell (PIC) code
— Already optimized and hybrid (MPI + OpenMP)
— Consider advanced hybrid techniques and PGAS

GPU Screening of Carbon Capture Materials
— Optimization for GPU

PIR3D Three-dimensional Flow Solver
— Hybridization via expert + application scientist
NBP’s NAS Parallel Benchmarks in various languages
— Comparison of MPI, Hybrid, and UPC
fvCAM Climate Benchmark
— Hybrid for reducing memory
S3D — Turbulent Combustion
— Hybridization for heterogeneous processors

SPECIAL THANKS!

GTS — Robert Preissl, Petascale Post-doc NERSC
GPU —Jihan Kim, Petascale Post-doc NERSC
PIR3D — Gabriele Jost, TACC, Robins, NWRA
NPB’s — Hongzhang Shan, LBNL

fvCAM— Nick Wright, NERSC

S3D — John Levesque, CRAY

General: Kathy Yelick, John Shalf

GTS is an optimized PIC magnetic fusion (real) application

* Gyrokinetic Tokamak Simulation (GTS) code

* Global 3D Particle-In-Cell (PIC) code to study microturbulence
& transport in magnetically confined fusion plasmas of
tokamaks

* Microturbulence: complex, nonlinear phenomenon; key to
modeling loss of confinement in tokamaks
e GTS: Highly-optimized Fortran90 (+C) code

e Massively parallel hybrid (MPI+OpenMP) parallelization :
tested and optimized on multiple platforms

GTS Results from NERSC Petascale Post-doc Robert Preiss| with advice
from NERSC staff and Cray Research, code from PPPL (Ethier, Wang)

Gem: Two different hybrid models in GTS: Using traditional
OpenMP worksharing constructs and OpenMP tasks

MPI _Init :
| [‘ | MPI Init
MPI process MPI process MPI process I | |
Start l l l MPI process MPI process MPI process
1h'eac§. . OpenMP- . . \Con‘p- tsht?;;d\ﬁ l l l \
parallel do <+ utation J OpenMP-) i Comp-
Merge__,' y : y_ V¥ W | Tasking I “7 utation
reads ! T
thread i i ?
) I I i MPlcomm- Merge__, ¥—Y—¥ Y x= Y Ly V¥ \"4
A 4 A 4 A 4 unication threads
MPI comm-
b W unication

MPI_Finalize

MPI Finalize

NEW OpenMP Tasking Model gives a new way to achieve more parallelism from hybrid
computation. OpenMP subteams might also be a way to do this.*

OpenMP tasks enables us to overlap MPI communication with independent computation
and therefore the overall runtime can be reduced by the costs of MPI communication.

Take-Away: This experience supports the development of advanced capabilities for OpenMP

*Barbara M. Chapman, Lei Huang, Haoqgiang Jin, Gabriele Jost, and Bronis R. de Supinski: Toward Enhancing OpenMP’s
Work-Sharing Directives. In proceedings, W.E. Nagel et al. (Eds.): Euro-Par 2006, LNCS 4128, pp. 645-654, 2006.

OpenMP tasking version outperforms original shifter,
especially in larger poloidal domains

256 size run 2048 size run
(mzetamax=) 128 x 2 (=npartdom) (mzetamax=) 128 x 16 (=npartdom)
300 250
250
. 200 M Tasking
S 200 .Tasklng ey
] L. 9 150 O Original
2, O Original —
o 150]
S £ 100
= 100 =
" 1 n . B ow
0] o
Shifter Allreduce ~ FillingHole SendRecv Shifter Allreduce FillingHole SendRecv

Performance breakdown of GTS shifter routine using 4 OpenMP threads per MPI
process with varying domain decomposition and particles per cell on Franklin Cray XT4.

MPI communication in the shift phase uses a toroidal MPI communicator (constantly 128)
Large performance differences in the 256 MPI run compared to 2048 MPI run!

Speed-Up is expected to be higher on larger GTS runs with hundreds of thousands CPUs
since MPI communication is more expensive

Time in Seconds

GEM: A new “shifter algorithm” using a combination of MPI, OpenMP,
and CAF gives significant performance improvement on 130K cores

— .—| |——| a) Classical hybrid MP1/OpenMP

mpl, || MP'z) [MPII) [m CAF CAF b) Extension — MPI thread teams for

ompparil_l_\kl__l l 1 11 . S = work distribution and collective MPI
bbb LLL [[H L__ H M} LM

parallel I { 1l {{ 1l {f‘ll Lﬁll c) Hybrid PGAS (CAF) / OpenMP allows

PLL) ULl - | - - | - - | - - | - ALL OpenMP threads per team to

(a) L ,[(b) (c) make communication calls to the

l . 4 R l;; ll:::np:ic:::sses/CAF images thread-safe PGAS communication

layer

Robert Preissl, Whichman, Long, Shalf, Ethier, Koniges, SC11 Best Paper Nominee

600.00 100

“-CAF-atom “-CAF-atom 60.00
500.00 - -+MPI-ms 83 ==MPI-ms “4-CAF-atom
“-MPI-ss /4 3 -MPlss . 5000 /
400.00 | §e7 3 =*MPI-ms
9 i 4000
300.00 2 5 L E -
P = ; 3000
200.00 - & 33)
= i 2000
100.00 17
10.00
0.00 0
1600 2880 5760 11520 23040 46080 92160 131072 1600 2880 5760 11520 21120 0.00
Number of CAF images / MPI procesess Number of CAF images / MPI processes 1024 2048 5440 10880 21760
Number of CAF images / MPI procesess
.
Single-Threaded (Benchmark Suite) Multi-Threaded (Benchmark Suite) Multi-Threaded (GTS)

Take-Away: Requires interoperability of MPI, OpenMP, and PGAS

GPU Monte Carlo Algorithms for Molecules within a
Microporous Framework

Post-doctoral Researcher: Jihan Kim, Pls: Berend Smit, Martin Head-Gordon, LBNL

The goal of this work is to develop GPU Monte Carlo algorithms to model mobile
gases within framework molecules for capture of CO,.

Graphical illustration of methane molecules (grey- Dirac GPU cluster (rack) at NERSC (44 Tesla
black) inside of a zeolite MFI framework (red). The C2050 Fermi cards)

void spaces within the framework are represented by
light circles.

GPU Computational Screening of Carbon Capture Materials

GEM: Screening of over 5 million materials would have taken many years of CPU-time. GPU
code developed has reduced this to a few weeks of CPU-time.

Take-Away: Can you beat this? Certain applications are “rocking” with GPUs

(1) GPU screening code

— Characterize and screen a large database
of zeolite structures to determine the
optimal frameworks for carbon capture

— Computes the Henry coefficient, which
characterize selectivity at low pressure

(2) GPU code structure
— Energy grid construction (GPU) bottleneck
— Pore Blocking (CPU)
— Widom Insertion Monte Carlo cycles (GPU)

(3) Performance
— Compute Bound

— Over 50x speedup compared to single
CPU core

Number of Occurences

80 I I |
methane

carbon dioxide

P
o
[
I
|

0 B i |

0 2¢-05 4e-05 6e-05 8e-05 0.0001 0.00012

Henry Coefficients (mol/kg/Pa)

Histogram of the Henry coefficient distribution for
carbon dioxide and methane gases inside 193 IZA zeolite
structures

OpenMP Hybridization of PIR3D

* Motivation:
* Increase performance by taking DO 2500 IX=1,LOCNX
advantage of idle cores within one shared |
memory node ISomp parallel do private(iy,rvsc)
* OpenMP Parallelization strategy: DO 2220 1Z=1,NZ
* Identify most time consuming routines DO 2220 1Y=1,NY
* Place OpenMP directives on the time VYIX(IY,1Z) = YF(IY,1Z)
consuming loops VY_X(I1Z,1Y,1X) = YF(1Y,1Z)
* Only place directives on loops across RVSC = RVISC_X(IZ,1Y,1X)
undistributed dimension DVY2_X(IZ,1Y,IX) =
* MPI calls only occur outside of parallel DVY2_X(IZ1IY,1X) - (VYIX
regions: No thread safety is required for (1Y,12)+VBG(I1Z)) * YDF(IY,1Z)
MPI library +RVSC*YDDF(IY,1Z)
* Requirements: 2220 CONTINUE
* Thread safe LAPACK and FFTW Routines | !Somp end parallel do
* Note FFTW initialization routine not
thread safe: Execute outside 2500 CONTINUE

From Parallelization of a 3-D Flow Solver for Multi-Core Node Clusters: Experiences Using Hybrid MPl/OpenMP
In the Real World, Gabriele Jost, University of Texas at Austin; Bob Robins, NorthWest Research Associates

GEM: All configurations benefit from hybridization, but some more
than others: Hybrid Timings for Case 512x256x256

Timings on Cray XT5

o * Use all 4 cores/per socket 3

160 e Benefits of OpenMP: "F==H==i‘
120 | e Increase the number 1%=I=§==ﬂ\7
100 of usable cores g

o | I I 128x2 outperforms :I:g::’—
40 - 256x1 on 256 cores, N Ny
o I I I l | 128x4 better than

64x1 128x1 64x2 256x1 128x2 64x4 256x2 128x4 64x8 256x4 128x8 256x2 on 512 cores

Timings on Sun Constellation
450

400 But: Most of the
350 performance due to
300 “spacing” of MPI. About

ZZ T 12% improvement due
. to OpenMP

100 I I

5

ol I I 1.

64x1 128x1 64x2 256x1 128x2 64x4 256x2 128x4 64x8 256x4 128x8 256x8

Time in Seconds

o

MPI Procs x OMP Threads

Hybrid Timings for Case 1024x512x256

Case 1024x512x256 on Cray XT5

600

* Only 1 MPI Process per

>0 " 1 MPI/socket socket due to memory
400 consumption
300 * 14%-10% performance
- increase on Cray XT5
e 13% to 22%
100 performance increase on
0 - o — w Sun Constellation

64x1 64x2 64x4 64x8 128x1128x2 128x4 128x8 256x1256x2 256x4 256x8

Case 1024x512x256 on Sun Constellation
1000

900

Take-Away: Expert Hybrid Programming done
800

00 " 1 MPI/socket with extra care gives performance
600 improvements
500
400
300
200
100 I I
o | an
g o % ™

The eight NAS parallel benchmarks (NPBs) have been
written in various languages including hybrid for three

MG Multigrid Approximate the solution to a three-
dimensional discrete Poisson equation using
the V-cycle multigrid method

CG Conjugate Estimate smallest eigenvalue of sparse SPD

Gradient matrix using the inverse iteration with the
conjugate gradient method

FT Fast Fourier Solve a three-dimensional PDE using the

Transform fast Fourier transform (FFT)

IS Integer Sort Sort small integers using the bucket sort
algorithm

EP Embarrassingly | Generate independent Gaussian

Parallel random variates using the
Marsaglia polar method

BT Block Tridiagonal | Solve a system of PDEs using 3 different MZ

SP Scalar Pentadiag | algorithms

LU Lower/Upper

GEM: Significant improvement in Memory Usage is possible for
new hardware—Comparison of OpenMP, UPC, MPI using NPB’s

1.2

MPI M UPC OpenMP

1.0

0.8 | —
0.6 - - - L
0.4 — — — — — — — -
0.2 — — — — — — — -
0.0 | | i]

EP LU BT SP CG IS MG

FT

Relative Memory Usage to MPI

MPI uses most memory, UPC uses slightly less

® OpenMP savings due to direct data access

Take-Away: We need more examples such as these
In different languages to spur development

Experiments by H. Shan, LBNL

Performance properties of languages is an evolving
issue as compilers and techniques improve

1.8
E 1.6 MPI ,
S 14 M OpenMP |
3 UPC
g 1.2 T
o
£ 1.0
5
£ o8 | — — — =
()]
0. 0.6 — — — — — —
2
= 0.4 7 1 — — = H
L
Q 0.2 | — — — — — —
[

0.0 T ‘ ‘ ‘ T

CG EP FT IS LU MG

® Similar performance for CG, EP, LU, MG

® For FT, IS, OpenMP delivers significantly better
performance due to efficient programming

Correct implementation is required for performance

GASNet vs MPI Latency on BG/P

1

—t=— MPI| Send/Recv
= GASNet (Get + sync)
| ==t GASNet (Put + sync)

Bl = = = Hardware Limit

7
%)
Eeol + : ; - :]
8
E st
oy
S
s 4
L=
2
S 3}
&

2 -

1

0 1 1 | |

1 2 4 8 186 32 64 128 258 512

Transfer Size (Bytes)

GASNet support for XE6 makes a critical difference

GEM: Significant improvement of GASNet over Gemini to GASNet over MPI conduit on
Cray XE6

* AMMedium latency
* Gemini-conduit - 1.25 uSec
* MPIl-conduit - 1.9 uSec
* AMLong throughput
* Gemini-conduit - ~5 GB/sec at 64KB message size
* MPI-conduit - ~ 2 GB/sec at 512 KB message size
* Put
* Gemini-conduit - 1.25 uSec
* MPI-conduit - 4 uSec
* Get
* Gemini-conduit - 2.2 uSec
* MPI-conduit - 4 uSec

Take-Away: To get good performance from a language, we must have the
appropriate infrastructure/implementations

From: The Berkeley GASNet and UPC Group, Lawrence Stewart Serissa Research

Memory (only) Gem: Hybrid Performance of Climate Code

OpenMP time & MPI time Serial time ===Memory (GB)
900 70
800 60
700
B 50 —
600 8
— i >
“ 500 40§
)
£ g
i= 400 - 30 2
s
300 o

200 — o
00 —' 10
0 0
1 2 3 6 12 24
240 120 80 40 20 10

OpenMP threads / MPI tasks

NERSC Hopper from Cray Center of Excellence
Nick Wright, Marcus Wagner, Tony

Drummond, John Shalf

Take away: Sometimes performance is better,
sometimes not. Almost always memory reduction.
Hybrid performance not automatic — requires human.

Cray Study: OpenMP accelerator extensions yield promise
for ease of transition to heterogeneous architectures

* OpenMP accelerator extensions

— Are the directives powerful enough to allow the
developer to pass information on to the compiler

— Can the compiler generate code that get performance
close to Cuda

* Application of this method to S3D combustion code
— Part of Cray Center of Excellence, John Levesque

— Requires a combination of programmer intervention
for code re-arrangement and automatic

GEM: S3D yields performance and portability

Original OpenMP Cuda Fortran Directive Directive

12 cores best out of Approach Approach
24 Restructured

Kernel .0417 Seconds .0061 Seconds .0113 Seconds .0067 Seconds
Only

e|n S3D all of the arrays used in this computation will reside on the
accelerator prior to the invocation of the kernel.

Take away: This appeals to application programmers —
one version of code for multiple machines. Again,
human intervention is required.

Courtesy John Leveque, Cray Center of Excellence

Current Application Path-Hybrid MP1/OpenMP Codes are
becoming increasingly prevalent; is this enough?

 OpenMP/MPI Hybrid Codes provide these opportunities:
— Lower communication overhead
— Lower memory requirements
— Provide for flexible load-balancing on coarse and fine grain
— Increase parallelism

* PGAS
— Can use customized communication to avoid hot-spots
* But UPC Collectives do not support some communication patterns
— Benefits of message aggregation depends on the arch./interconnect
— UPC - Shared Memory Programming
* Less communication with reduced memory utilization
— Mapping BUPC language-level threads to Pthreads and/or Processes
* Mix of processes and pthreads often gives the best performance

e Other Models must answer — Can You Beat This?

— Concurrent Collections? Automatic tools for CUDA? New
parallelism models and languages?

